Parameterized Approximability of the Disjoint Cycle Problem

نویسندگان

  • Martin Grohe
  • Magdalena Grüber
چکیده

We give an fpt approximation algorithm for the directed vertex disjoint cycle problem. Given a directed graph G with n vertices and a positive integer k, the algorithm constructs a family of at least k/ρ(k) disjoint cycles of G if the graph G has a family of at least k disjoint cycles (and otherwise may still produce a solution, or just report failure). Here ρ is a computable function such that k/ρ(k) is nondecreasing and unbounded. The running time of our algorithm is polynomial. The directed vertex disjoint cycle problem is hard for the parameterized complexity class W[1], and to the best of our knowledge our algorithm is the first fpt approximation algorithm for a natural W[1]-hard problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Disjoint Paths on Edge-Colored Graphs: Approximability and Tractability

The problem of finding the maximum number of vertex-disjoint uni-color paths in an edge-colored graph has been recently introduced in literature, motivated by applications in social network analysis. In this paper we investigate the approximation and parameterized complexity of the problem. First, we show that, for any constant ε > 0, the problem is not approximable within factor c1−ε, where c ...

متن کامل

Approximability and parameterized complexity of multicover by c-intervals

A c-interval is the disjoint union of c intervals over N. The c-IntervalMulticover problem is the special case of SetMulticover where all sets available for covering are c-intervals. We strengthen known APX-hardness results for c-IntervalMulticover, show W[1]-hardness when parameterized by the solution size, and present fixed-parameter algorithms for alternative parameterizations.

متن کامل

Kernelization of Cycle Packing with Relaxed Disjointness Constraints

A key result in the field of kernelization, a subfield of parameterized complexity, states that the classic Disjoint Cycle Packing problem, i.e. finding k vertex disjoint cycles in a given graph G, admits no polynomial kernel unless NP ⊆ coNP/poly. However, very little is known about this problem beyond the aforementioned kernelization lower bound (within the parameterized complexity framework)...

متن کامل

The Parameterized Complexity of Packing Arc-Disjoint Cycles in Tournaments

Given a directed graph D on n vertices and a positive integer k, the Arc-Disjoint Cycle Packing problem is to determine whether D has k arc-disjoint cycles. This problem is known to be W[1]-hard in general directed graphs. In this paper, we initiate a systematic study on the parameterized complexity of the problem restricted to tournaments. We show that the problem is fixed-parameter tractable ...

متن کامل

Parameterized Complexity and Approximability of the SLCS Problem

We introduce the Longest Compatible Sequence (Slcs) problem. This problem deals with p-sequences, which are strings on a given alphabet where each letter occurs at most once. The Slcs problem takes as input a collection of k p-sequences on a common alphabet L of size n, and seeks a p-sequence on L which respects the precedence constraints induced by each input sequence, and is of maximal length...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007